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Abstract 

To be effective and at the same time sustainable, a community data curation model needs to be aligned with the 
community’s current data practices, including research project activities, data types, and perceptions of data quality. 
Based on a survey of members of the Condensed Matter Physics (CMP) community gathered around the National High 
Magnetic Field Laboratory, a large national laboratory, this paper defines a model of CMP research project tasks 
consisting of ten task constructs. In addition, the study develops a model of data quality perceptions by CMP scientists 
consisting of four data quality constructs. The paper also discusses relationships among the data quality perceptions, 
project roles, and demographic characteristics of CMP scientists. The findings of the study can inform the design of a 
CMP data curation model that is aligned and harmonized with the community’s research work structure and data 
practices. 

 

1. Introduction 

Scientific communities have long established, culturally justified and sustainable models for curation and quality 
evaluation of scholarly publications. As science becomes increasingly data driven (Kell & Oliver, 2004), the need for 
building similar shared, sustainable community models for data curation and for integrating them with publication models 
is of significant interest and concern for funding agencies, scientific institutions, and research communities (Atkins et al., 
2003).  

To manage or curate data, one has to have knowledge of what constitutes data in a particular domain and for a particular 
process, as well as the characteristics of data, such as type, format, scale, ownership, quality, and provenance. Although 
Condensed Matter Physics (CMP) is a small team science (Stvilia et al., 2011), a typical research process in CMP is 
complex and distributed in time and space. A CMP research process may produce and use/reuse different kinds of data 
generated by different scientists with different specializations and from different labs and institutions around the world. 
Data types, metadata, and formats are ultimately defined by the activities that create and operate on the data and the tools 
used in those activities. To a CMP scientist designing and building instruments for an experiment, the computer aided 



design (CAD) files of the instruments can be important data with high reuse potential. A scientist growing a new material 
may consider the chemical formula or an actual sample of the material as the most important data, while for another 
scientist measuring the properties of the same material, data could be readings of the instruments or sensors attached to 
that sample. The same research project may produce multiple papers published in different journals and pre-print archives. 
Without preserving the process metadata and support data (e.g., CAD files), replicating the research and linking and 
discovering related datasets and literature can be difficult and costly. 

One of the main inhibitors of data curation and sharing could be concerns about data quality. Data owners may be 
concerned about the quality and potential misuse or misinterpretation of their data. Users, on the other hand, may not have 
sufficient resources or access to the processes that generated the data to evaluate their quality, and hence may mistrust and 
not use the data (Birnholtz & Bietz, 2003; Hinnant et al., 2012b). Data quality determines the quality of findings and 
decisions (Stvilia, Gasser, Twidale, & Smith, 2007). Long-term access to high quality data is essential if one is to make 
high quality decisions or to justify, validate, and evaluate existing decisions and results. Research data have their own 
lifecycles, where the same data or metadata can be used for different purposes and can have different levels of importance 
in different activities and at different times (Greenberg, 2001; Stvilia & Gasser, 2008a). Data, metadata, and data quality 
assurance needs to be analyzed at the process level to enable reproducible research (Mesirov, 2010; Peng, 2011).  

There have been many information and data quality frameworks proposed in the literature (see Ge and Helfert, 2007, for a 
review), creating valuable knowledge for guiding data quality assurance practices and research. At the same time there is 
still a significant need for studying data curation, including data quality assurance work of different communities, to 
identify context specific structures of data quality problems, priorities of quality, and different sociotechnical aspects that 
may affect the community’s data curation work. This would help design a data quality assurance model well-aligned with 
the community’s data culture, needs, and priorities. A context-specific knowledge base of data quality assurance 
processes, tools, and skills needed can be used for effective infrastructure-support planning, training, and cross-contextual 
quality-based data selection and integration (Stvilia, Al-Faraj, & Yi, 2009). These knowledge bases—sociotechnical 
repertoires—can be used to assemble an effective cyber-infrastructure configuration to support research projects on 
demand (Foster, Jennings, & Kesselman, 2004). To be robust to changes, such as adding or dropping members or 
requirements, the repertoires need to be as complete as possible and aligned well with the real world community and team 
relationships and practices of work organization (Stvilia, Twidale, Smith, & Gasser, 2008). 

This paper contributes towards the above objectives by examining project tasks, perceptions of and priorities for data 
quality, and data management practices of a CMP community gathered around the National High Magnetic Field 
Laboratory (NHMFL). Findings of the study can be used by the Lab and scientific funding agencies to provide the CMP 
community and other similar communities and labs with effective data curation infrastructure support.  

 

 

2. Related Research 

The most closely related work to this research is the survey of the data practices of a large interdisciplinary sample of 
scientists conducted by Tenopir and colleagues (2011). In addition to the questions related to research data collection, 
tools, storage and reuse, the researchers also investigated scientist’s perception of different barriers that might hinder data 
sharing and/or reuse, as well as the relationships among the demographic characteristics of scientists and their perceptions 
and data practices. This study differs from their work by focusing on the data practices of a specific scientific community. 
In addition, this study defines the community specific models of research project tasks and perception of quality based on 
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the analysis of empirical data. Regardless of these differences, the work by Tenopir and colleagues provides an excellent 
context for discussing some of the findings of this study. Another closely related work to this research is the study of data 
practices of an interdisciplinary research center carried out by Borgman et al (2007). In particular, their study provides a 
good insight into the types of data and tools used by scientists from the areas of terrestrial ecology, marine biology, 
environmental contaminant transport, and seismology. 

Several taxonomies and typologies of scientific activities have been proposed in the literature (e.g., Earth Observing 
System Data Panel, 1986; Qin, Ball, & Greenberg, 2012; Sufi & Mathews, 2004). Each phase or activity of a research 
project may produce useful and potentially reusable data. Data curation is the process of managing data for long term 
availability and reuse (Curry, Freitas, & O'Riáin, 2010; Lord & Macdonald, 2003). The data curation literature provides a 
number of models (e.g., the DCC Curation Lifecycle Model) of research data and related curation activities and processes 
(e.g., Burton & Treloar, 2009; Higgins, 2008). In addition, the data curation community has developed tools for 
identifying an organization’s data assets; determining data curation tasks, architecture components, and risks; and 
devising appropriate policies and strategies for digital data archives and repositories. Characteristic examples of such tools 
include the Reference Model for an Open Archival Information System (OAIS), the Digital Repository Audit Method 
Based On Risk Assessment (DRAMBORA; DRAMBORA Consortium, 2008), the Data Audit Framework (Jones, Ross, 
& Ruusalepp, 2009), and the Trustworthy Repositories Audit and Certification (TRAC; Center for Research Libraries & 
Online Computer Library Center, 2007).  

To promote reusability and sharing of data management infrastructure components, the library, preservation, and data 
management communities have started developing registries of data types and formats (e.g., PRONOM1, Research Data 
Alliance2), metadata schemas (e.g., schema.org), and data curation templates (Data Curation Profiles3), as well as tools for 
validating file objects against file format specifications (e.g., JHOVE4). 

Quality assurance is an essential part of data curation. Quality, in general, is defined as “fitness for use” (Juran, 1992). 
Consequently, data quality can be defined as the degree the data meets the needs and requirements of the activities in 
which it is used (Stvilia et al., 2007; Wang & Strong, 1996). Quality is dynamic and multidimensional, and the criticality 
of different quality problems is contextual. Data quality can be changed actively through direct modification of data 
objects, or indirectly through changes in the context of their interpretation and use (Stvilia et al., 2007; Stvilia & Gasser, 
2008a). Hence, to aggregate or reuse data and data quality measurements from different contexts, there is a need for 
context-specific studies of data quality. A change in context may lead to not only changes in conceptual data quality 
measurement models, vocabularies, metrics, and measurement representations with regard to scale, precision, and 
formatting, but also changes in value structures, reference sources, and quality requirements (Stvilia et al., 2008). Data 
quality can be evaluated directly by examining intrinsic properties of data, or indirectly by evaluating the records of their 
provenance and use (Simmhan, Plale, & Gannon, 2005; Stvilia, 2006). The quality of data can be affected by the quality 
of any components of the data creation process and infrastructure, including the quality of data contributors and project 
teams, reference sources, and quality assurance tools (Stvilia et al., 2007). Several conceptual Information Quality (IQ) 
assessment models—both general and information type-specific—have been proposed in the IQ literature (e.g., Bruce & 
Hillman, 2004; Eppler, 2003; Fallis & Frické, 2002; Stvilia, 2007; Stvilia et al., 2007; Wang & Strong, 1996). For 
example, Stvilia et al. (2008) studied article creation and quality control processes in the English Wikipedia, while 
Sheppard and Terveen (2011) discussed data quality assurance in a citizen science community and the impact of data 
quality assurance work on science education. There is also a significant body of research on data quality issues in large-
scale library digitization projects (e.g., Conway, 2010, 2011; Rieger, 2008). Arazy, Nov, Patterson, and Yeo (2011), 
Hinnant et al. (2012a), and Stvilia et al. (2011) discussed the relationships between project team composition, 
productivity, and information product quality. Nichols, Chan, Bainbridge, McKay, and Twidale (2008) and Stvilia (2008) 
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proposed architectures for information and data quality visualization and assessment tools. Open source tools have been 
developed to assess the validity of file objects (e.g., JHOVE) and enhance the quality of tabular data (e.g., OpenRefine5).  

Conceptualizations of research data quality and studies of scientists’ perceptions of and priorities for data quality and data 
quality assurance skills are also found in the literature (e.g., De Roure, 2010; Gutmann, Schürer, Donakowski, & 
Beedham, 2004; Huang, Stvilia, Jorgensen, & Bass, 2012). Wu, Stvilia, and Lee (2012) reviewed the sources of data 
quality problems and knowledge organization approaches and tools used for data quality control in molecular biology. 
The perception of what constitutes quality and useful data, or when the data become useful, may vary within the same 
process or discipline, as well as across different processes within disciplines (Ball, 2010; Earth Observing System Data 
Panel, 1986). Furthermore, scientists may rely on different properties and cues of data to assess their relevance, value, and 
reusability (Bechhofer et al., 2013; Faniel & Jacobsen, 2010).  

Although significant research has focused on the data practices and data curation activities of individual scientific projects 
and collaborations, to the best of our knowledge there has been no systematic study of the data practices in CMP, the 
largest interdisciplinary community within physics (National Research Council [U.S.], 2007). To provide effective data 
management support for community level data curation and reuse, better understanding and knowledge is needed of the 
CMP community’s existing data practices and relationships, including the community’s typical project tasks and 
perceptions of and priorities for data quality. 

 

 

3. Research Design 

This research examines data practices of the CMP community gathered around the NHMFL. The NHMFL (2012) is a 
unique interdisciplinary scientific center, one of the largest of its kind, collaboratively operated by Florida State 
University, the University of Florida, and Los Alamos National Laboratory. It provides scientists with free access to its 
facilities for research involving magnetic fields, superconducting magnetometry, magnetic resonance imaging, and 
magnetic spectroscopy.  

To study data practices at the community level one needs a theoretical framework, which can provide not only high-level 
conceptualizations of different data-intensive activities of the community, but also mechanisms for integrating, learning, 
and harmonizing conceptualizations of the community’s data practices by different stakeholder groups. The theoretical 
framework used for this research consists of activity theory (Engeström, 1990, 2001; Kuutti, 1995; Leont’ev, 1978) and an 
information quality assessment framework and a value-based quality assessment model developed by one of the authors in 
previous research (Stvilia et al., 2007; Stvilia & Gasser, 2008b). The framework provides general conceptualizations of 
activity structure (i.e., goal oriented actions, tools, roles, rules, strategies, division of labor, etc.), its community and 
cultural context (i.e., language, norms, conventions, social networks, and relationships), and the structure of activity-
specific data quality problems and related quality criteria. These conceptualizations were used to guide the development 
of semi-structured interview protocols, a survey instrument, and coding schemas for data analysis. 

This paper reports on the data quality assurance part of a comprehensive survey of the data practices of the CMP 
community. To better understand the community’s data practices, issues, and problems and develop the survey 
instrument, the authors first conducted 12 semi-structured interviews with representatives of different groups of the 
community, including sample material growers, experimentalists, theorists, visiting scientists, local scientists, 
administrators, senior scientists, junior scientists, postdoctoral researchers, and students. The authors used concepts and 
relationships from activity theory, the information quality assessment framework (Stvilia et al., 2007), and the literature to 
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develop questions for the interview protocol. The audio recordings of the interviews were transcribed and content 
analyzed. 

The study then used interview findings to expand and refine the set of interview questions and develop a survey 
instrument. The survey instrument was pretested with nine participants from the CMP community for readability and 
validity. The finalized survey was distributed online to 672 scientists in the fall of 2012 using Qualtrics survey software. 
The scientists were invited using their email addresses, which were obtained from the NHMFL’s database of researchers 
who conducted experiments using the Lab’s facilities between 2008-2011. Only scientists who indicated CMP as their 
discipline were selected. The survey consisted of 7 sections and 89 questions. Although participants completed early 
sections of the survey at higher rates, 160 participants completed all the questions, resulting in an overall response rate of 
24%. This paper reports results of the data quality evaluation section of the survey which was completed by 172 
participants (26% response rate).  

Before participating in an interview or completing an online survey, participants were given a consent form approved by 
the Human Subjects Committee of Florida State University. The form contained information about the project, including 
information about potential risks associated with participation in the data collection. Participants who completed an 
interview or a survey were emailed a $50 Amazon gift card. 

 

 

4. Research Questions 

The paper examines the following research questions: 

1. What are the typical activities of a CMP research project? 
2. What are the types of data these activities produce and/or use? 
3. What are the tools that the CMP scientists use to manage data? 
4. What are the project roles that the CMP scientists play? 
5. What are the types and sources of data quality problems in CMP? 
6. What are the perceptions of data quality in CMP? 

 

 

5. Findings 

5.1 Activities 

CMP scientists study the properties, including the structure and state dynamics, of condensed matter. At the NHMFL, 
scientists measure and interpret the effects and dynamics of interaction of different stimuli, such as magnetic fields, on 
matter. CMP research projects consist of multiple activities and are usually performed by small teams of scientists, often 
with complementary skills and knowledge, playing different roles. There have been several general models and typologies 
of scientific activities and project tasks identified in the literature (e.g., Ball, 2010; Levitin & Redman, 1993). According 
to Bailey (1994), there are two ways of categorization schema construction: the classic, deductive approach and the 
inductive, data driven approach. The later involves empirical data collection, clustering and then assigning conceptual 
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labels to the data clusters. To identify a more specific structure of the CMP community’s research work, this study used 
the empirical, bottom-up approach to identify the types of research project tasks.   

In particular, the survey asked participants for some of the typical tasks that they perform in a research project. 171 
participants answered this open-ended question. Responses were tokenized, terms normalized to lemma forms, and 
synonyms were merged using Java codes developed by one of the authors and the Stanford CoreNLP6 Java natural 
language processing libraries. The analysis produced 294 unique terms ordered by frequency. The 34 most frequent terms 
were selected for the next phase of the analysis, an application of factor analysis to identify underlying semantic 
relationships among the terms and cluster related terms into a fewer number of factors or task constructs. Factor analysis 
and Principal Component Analysis (PCA) are frequently used dimension reduction techniques (Duda et al., 2000; Hair, 
Black, Babin, Anderson, & Tatham, 2005).  

Starting with a model of 34 variables ensured 5 cases for each variable, which is the minimum number of cases required 
by factor analysis (Hair, Black, Babin, Anderson, & Tatham, 2005). In addition, variables with a Measure of Sampling 
Adequacy (MSA) lower than 0.5 were removed from the model one by one until the MSA of all of the variables was 
higher than 0.5. The resulting model included 27 variables with an overall MSA of 0.635 and the MSA of each variable 
higher than 0.5. The Bartlet test of sphericity was significant at the 0.0001 level. PCA was used to extract factors. Factors 
with Eigenvalues above 1 were selected for inclusion in the factor model. These 10 factors captured 65% of the total 
variance. The PCA factor matrix was rotated using the Varimax rotation algorithm with Kaiser normalization. Based on 
the total number of cases (171), factor loadings of 0.45 and above were identified as significant (see Table 1).  
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Table 1. Factor loadings for task terms. 

 Dimension 
Component 

1 2 3 4 5 6 7 8 9 10 
data 0.25 0.10 0.83 -0.11 -0.08 0.05 0.08 0.19 0.08 -0.03 

analyze 0.32 0.24 0.71 -0.16 -0.06 0.00 0.19 0.08 0.16 -0.04 

experiment 0.23 0.08 -0.03 -0.20 -0.01 -0.17 0.00 0.74 0.32 -0.01 

material -0.08 0.07 -0.05 0.82 -0.03 -0.01 0.14 -0.03 -0.03 0.02 

write 0.79 0.15 0.11 -0.11 0.25 -0.11 0.06 0.08 0.09 -0.01 

paper 0.76 0.12 0.20 -0.06 0.15 -0.04 0.01 -0.04 0.14 -0.03 

design 0.32 0.10 -0.02 -0.06 0.11 0.42 -0.13 0.36 -0.11 -0.25 

characterize -0.09 -0.05 -0.08 0.70 -0.04 0.02 -0.09 -0.09 -0.05 -0.05 

synthesize 0.01 -0.04 -0.04 0.79 -0.04 -0.09 0.03 -0.03 -0.01 0.07 

acquire -0.04 -0.10 0.79 0.00 0.09 -0.06 -0.13 0.01 -0.11 -0.08 

device 0.00 -0.01 0.05 -0.06 -0.04 0.87 0.01 -0.06 0.06 -0.01 

fabricate -0.07 0.23 -0.06 -0.02 0.02 0.82 -0.04 -0.01 -0.06 0.03 

interpret 0.00 -0.06 0.02 -0.07 0.06 -0.01 -0.02 0.01 0.85 -0.03 

discuss 0.25 -0.06 0.15 0.10 -0.04 0.01 0.69 0.13 0.15 0.01 

literature 0.03 0.66 0.12 -0.05 -0.03 0.07 -0.22 -0.05 0.18 0.04 

property -0.08 -0.09 -0.12 0.08 0.09 -0.05 -0.02 0.07 -0.10 0.84 

study 0.28 0.33 0.00 -0.11 -0.17 0.07 -0.14 -0.09 0.13 0.51 

manage -0.03 0.62 -0.04 0.01 0.08 0.03 0.20 0.07 -0.08 -0.05 

idea 0.05 0.14 -0.05 -0.01 0.78 0.08 0.04 -0.06 0.14 -0.04 

coordinate 0.02 0.03 0.06 -0.10 0.71 -0.06 0.39 -0.05 0.04 0.17 

supervise 0.30 -0.12 0.01 -0.05 0.68 -0.04 -0.26 0.18 -0.21 -0.10 

setup -0.06 -0.09 0.28 -0.03 -0.01 0.07 0.02 0.68 -0.19 0.06 

edit 0.45 0.43 -0.10 0.03 0.14 0.13 0.16 0.04 -0.18 -0.06 

report 0.70 -0.19 0.11 -0.05 -0.15 0.07 0.11 0.10 -0.15 0.09 

team -0.02 0.11 -0.08 -0.02 0.13 -0.07 0.69 -0.10 -0.16 -0.10 

simulate 0.05 0.60 0.06 -0.09 -0.13 0.05 -0.15 -0.12 -0.13 0.02 

develop 0.07 0.73 0.04 0.12 0.21 0.08 0.24 0.08 0.05 0.04 

Note. Extraction method: PCA; rotation method: Varimax with Kaiser normalization. 

 

Based on the variable loadings, factor 1 can be interpreted as scholarly communication activities; factor 2 as simulation; 
factor 3 as data collection and analysis; factor 4 as sample material synthesis; factor 5 as administration and 
coordination; factor 6 as device building; factor 7 as team discussion; factor 8 as experiment setup; factor 9 as 
interpretation; and factor 10 as research objective (see Table 2).  
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Table 2. CMP task constructs. 

Factor Task construct Terms 
1 Scholarly communication write, paper, edit, report 

2 Simulation literature, manage, develop, simulate 

3 Data collection and analysis data, analyze, acquire 

4 Sample material synthesis material, characterize, synthesize 

5 Administration and 
coordination 

idea, coordinate, supervise 

6 Device building fabricate, device 

7 Team discussion discuss, team 

8 Experiment setup setup, experiment 

9 Interpretation interpret 

10 Research objective study, property 

 

 

5.2 Data 

Data is one of the main tools and products of scientific activities. To manage or curate data, one has to have knowledge of 
what constitutes data in a particular domain and for a particular process, as well as the characteristics of the data, such as 
type, format, scale, ownership, quality, and provenance. The Office of Management and Budget (OMB, 1999, section 
36(d)(2)(i)) defines scientific data as “the recorded factual material commonly accepted in the scientific community as 
necessary to validate research findings,” emphasizing the importance of validation tasks in scientific research. However, 
the lifecycle of a scientific research project comprises multiple tasks. As the literature suggests (e.g., Buckland, 1997; 
Redman, 1998), scientists even within the same discipline may have different perceptions of what constitutes data 
depending on their specializations or the particular research tasks they perform. A scientist growing a new material may 
consider the chemical formula or an actual physical sample of the material as data, while for another scientist measuring 
the properties of the same material, data could be readings of the instruments or sensors attached to that sample. To a 
theorist, data could be obtained from simulations and/or analytical calculations. To a reader or a reviewer of a manuscript 
submitted to a scholarly journal, data can be graphs and analytical calculations included in the manuscript. Furthermore, 
one person’s metadata can be another person’s data (Redman, 1998). The process of generating a successful sample of a 
material documented in a sample grower’s notebook can be metadata to the sample grower, but data to another scientist 
who wants to replicate the sample.  

When asked in the survey what types of data they create or use, 91% of participants indicated that they produced or used 
raw data generated by instruments or simulation programs. The next most frequently selected data type was text 
documents (77%), followed by slides (65%) and laboratory notes (63%). Other frequently identified data types included 
spreadsheets, software codes, drawings, and statistical analysis data files (see Table 3). Participants specified other types 
of data that included software specific data analysis and visualization files, such as the Mathematica, MatLab, OriginPro, 
and LabView file types. 
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Table 3. Types of data created or used. 

Data Type Responses % 
Raw data generated by simulation programs, sensors or 
instruments 

168 91% 

Text documents (e.g. Word, PDF, LaTeX, TXT) 141 77% 

Slides (e.g., PowerPoint) 120 65% 

Laboratory notes 115 63% 

Spreadsheets (e.g. Excel) 72 39% 

Software codes 68 37% 

Drawings (e.g., CAD) 57 31% 

Statistical data files 34 18% 

Website (e.g., project Website) 15 8% 

Other 14 8% 

Databases (e.g. Access, MySQL, Oracle) 9 5% 

 

Data may not be very useful without “data about data”: documentation or metadata. Metadata enables interpreting the data 
meaningfully, connecting to related data and knowledge, assessing their quality, and making them discoverable and 
reusable. When asked at which project phase documentation was created, participants most frequently selected the stages 
of data analysis, scholarly communication, and data collection (see Table 4). More than half of the participants indicated 
that they created documentation at the research design stage. Less than 30% mentioned creating documentation when 
preparing data for preservation. Only 10% indicated that they added documentation when depositing data in an 
institutional or subject data repository.  

 

Table 4. When is documentation created? 

Stage Responses % 
Analyzing data 177 96% 

Writing a paper 170 92% 

Collecting data 163 89% 

Presenting findings at a conference 151 82% 

Publishing a paper in a peer-reviewed journal 142 77% 

Publishing a paper in a pre-print archive (e.g., arXiv.org) 112 61% 

Research design 95 52% 

Preparing data for preservation 49 27% 

Data management planning 40 22% 

Depositing data in an institutional or subject data repository 18 10% 

Other 3 2% 

Never 0 0% 
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To enable and support effective and efficient metadata creation, it is important to know what tools the community uses to 
document data. When asked what tools they used to document and make data meaningful, 84% of the participants 
identified graphing or charting software, followed by presentation software such as PowerPoint (80%), paper-based lab 
notebooks (73%), and email (68%). Only 22% of the participants indicated that they used specialized electronic 
documentation software. In addition, only 4% of the participants indicated the use of a metadata schema to document data 
(see Table 5). Participants also mentioned using text “read me” files to describe the content of file folders. 

 

Table 5. Tools used to create documentation. 

Tool Responses % 
Graphing or charting software (e.g. MATLAB, Excel) 155 84% 

Presentation software (e.g. PowerPoint) 148 80% 

Paper-based lab notebook 134 73% 

Email 125 68% 

Word processor (e.g., MS Word) 120 65% 

Electronic lab notebook (e.g. OneNote, Labnotes) 40 22% 

Other 16 9% 

One or more metadata schema 7 4% 

None 0 0% 

 

A majority of the participants (60%) indicated that they did not use any specific standards or guidelines for documenting 
data. 22% of the participants indicated that they followed specific documentation guidelines; of this group, 61% of them 
named their team as requiring the use of guidelines, followed by the lab (46%) and the National Science Foundation 
(NSF; 24%). Only 34% of the participants indicated that their typical project had a data management plan. A majority of 
the participants felt that the metadata they created was of good (43%) or very good (36%) quality. Only 12% stated that 
the quality of their metadata was fair (11%) or poor (1%). 8% stated that their metadata was excellent. 

In terms of reusing data, 47% of the participants indicated that they had used data generated outside of their projects. The 
most frequently mentioned type of reused data was text documents, followed by PowerPoint slides and raw data generated 
from sensors or simulation programs. 

 

5.3 Participant Demographics and Project Roles 
The overwhelming majority of the participants indicated that they would characterize their research as experimental 
(97%). Fewer participants indicated that they did computational (9%) or theoretical (9%) physics research. The majority 
of participants hold either academic or research positions (36% each). The next largest group was participants who hold 
both academic and research positions (14%). Only 1% of the participants indicated that they held an administrator 
position. Out of those who held academic positions, the largest group was graduate students (29%), followed by full 
professors (27%) and associate professors (22%). The largest group among those who held research positions was 
research scientists (43%), followed by student research assistants (26%), postdocs (19%), associate research scientists 
(8%), and assistant research scientists (4%). 
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On average participants worked on three collaborative projects per year and the average project team size was five. 48% 
indicated that they worked only on funded collaborative projects. 50% worked on both funded and unfunded collaborative 
projects each year. Only 2% worked on purely unfunded collaborative projects. 

36% of the participants identified the Principal Investigator (PI) as their primary role in a typical funded research project. 
The second largest group was student research assistants (22%) followed by Co-PIs (16%) and postdoctoral researchers 
(15%). The Senior Investigator and Project Manager were the least frequently identified roles (7% and 2%). The role 
distribution for unfunded projects was more or less similar, with 33% of participants identifying themselves as project 
leads; however, no postdoctoral researchers or student research assistants identified a role for themselves on an unfunded 
project.  

When asked who was ultimately responsible for managing research data in a typical funded project, 51% of the 
participants selected the PI. Other frequently selected choices included a student research assistant (14%) and that no one 
was responsible (10%; see Table 6). Participants used the other category (5%) to specify the following data management 
arrangements: “data generator”, “everybody”, and “PI has ultimate authority, but graduate students taking the data have 
immediate and primary responsibility”.  

For unfunded projects, in addition to the project lead (44%) and student research assistant (14%), participants also 
selected project researcher (17%) and postdoctoral researcher (12%). Similar to funded projects, 11% indicated that no 
one was responsible for managing the project’s data. For funded projects only 1% indicated that IT staff of the department 
or data repository were responsible for managing project data, while for unfunded projects no participants indicated this 
was true. 

 

Table 6. Who is ultimately responsible for managing data in a typical funded research project? 

Answer Response % 
Principal investigator (PI) 90 51% 

Student research assistant 25 14% 

No one (ultimate responsibility is not clearly defined) 17 10% 

Postdoc 13 7% 

Co-Principal investigator (Co-PI) 9 5% 

Other 8 5% 

Senior investigator 6 3% 

Don't know 3 2% 

Project manager 2 1% 

IT staff in your department or institution 2 1% 

Data repository or data archive 2 1% 

Research technician 0 0% 
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5.4 Quality 

5.4.1 Data Quality Problems 

Quality is usually defined as “fitness for use” (Juran, 1992). Data quality can be defined as the degree the data meets the 
needs and requirements of the activities in which it is used (Stvilia et al., 2007; Wang & Strong, 1996;). The concept of 
data quality and dimensions of quality are usually perceived through experiencing data problem incidents. They also are 
learned through data quality training and apprenticeship into the community’s data management culture (Stvilia et al., 
2008). A data quality problem occurs when the existing data quality is lower than the level of quality needed on one or 
more data quality dimensions for a particular activity (Gertsbakh, 1977; Strong, Lee, & Wang, 1997).  

Data quality problems may arise in any of the CMP project activities. These activities may include manufacturing material 
samples, designing an experiment, manufacturing instruments and parts for the experiment, measuring or simulating the 
characteristics of the sample under different treatments and conditions, interpreting the results of measurements, 
theorizing possible characteristics or relationships, and communicating findings to the community. However, not all data 
problems are data quality problems; some may be purely hardware related, such as insufficient data storage space. When 
asked about the data problems they had encountered, participants most frequently noted a lack of file naming conventions 
(52%), followed by difficulties in interpreting data due to poor or lost documentation (50%); a lack of version control 
(36%); and an inability to access data due to obsolescence, proprietary formats, expired software licenses, or other issues 
(35%; see Table 7). 

 

Table 7. Data problems encountered. 

Problem Responses % 
Lack of file naming conventions 95 52% 

Difficulty interpreting data due to poor or lost documentation 91 50% 

Lack of version control 66 36% 

Inability to access data due to obsolescence, proprietary formats, expired software license, and etc. 64 35% 

Insufficient storage space 42 23% 

None 25 14% 

Problems establishing ownership of data 11 6% 

Other 11 6% 

Problems establishing provenance of data 9 5% 

 

The most frequently reported sources of data quality problems were human errors (67%), impure sample materials (59%), 
imprecise instruments (51%), external environmental interferences in measurements (50%), errors in experiment design 
(44%), software errors (44%), and incomplete documentation (37%). Participants also reported changes in the context of 
data interpretation and purposeful reduction of data quality as problem sources, but at a much lower rate (see Table 8). 
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Table 8. Sources of data quality problems. 

Source Responses % 
Human error 115 67% 

Impure sample material 102 59% 

Imprecise instruments 88 51% 

Interferences from external environment 86 50% 

Error in experiment design 76 44% 

Software error 73 42% 

Incomplete documentation 63 37% 

Changes in the context of data interpretation (e.g., over time 
data becomes obsolete as new knowledge or technology 
emerges; data is aggregated from multiple contexts) 

33 19% 

Purposeful reduction of data quality (e.g., including 
incomplete data in a publication to keep a competitive edge) 

16 9% 

Don't know 7 4% 

Other 1 1% 

 

5.4.2 Data Quality Perception 

The structure and cost of data quality problems of the community determine the community’s perceptions of and priorities 
for data quality—a community specific model for data quality (Huang et al., 2012; Stvilia et al., 2008). To help define the 
community’s model for data quality, participants were asked to rate the importance of 14 quality dimensions on a 7-point 
Likert scale from extremely unimportant to extremely important. The authors used the information quality assessment 
framework (Stvilia et al., 2007), findings of the semi-structured interviews (Stvilia et al., 2013), and literature analysis to 
determine which 14 data quality dimensions to include in the survey (see Appendix, Table 16). 172 valid responses to the 
data quality perception question were obtained. The study used a factor analysis to determine the underlying structure of 
the community’s perception of quality. The analysis treated each quality dimension as a variable. The MSA of each of the 
variables was higher than 0.8, with the Bartlet test of sphericity significant at the 0.0001 level.  

The study used PCA to extract factors. A Scree plot suggested selecting the first four eigenvalues, which captured 69% of 
the total variance of the data. The component analysis factor matrix was rotated using the Varimax rotation algorithm with 
Kaiser normalization. Based on the total number of cases (172), factor loadings of 0.45 and above were identified as 
significant (see Table 9). 
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Table 9. Factor loadings for the data quality (DQ) criteria. 

  
DQ Criteria 

Component 

 1 2 3 4 

Accessibility 0.24 0.16 0.17 0.80 

Accuracy 0.83 0.15 0.10 0.17 

Authority 0.18 0.66 0.20 -0.04 

Completeness 0.72 0.15 0.16 0.31 

Consistency 0.55 0.25 0.13 0.46 

Currency 0.02 0.70 0.27 0.32 

Precision 0.61 0.45 0.07 0.15 

Informativeness 0.45 0.73 0.00 0.07 

Relevance 0.41 0.64 0.06 0.28 

Reliability 0.80 0.25 0.04 0.25 

Simplicity -0.04 0.25 0.75 0.23 

Stability 0.35 0.06 0.78 0.12 

Validity 0.62 0.18 0.56 -0.23 

Verifiability 0.75 0.26 0.31 -0.07 

Note. Extraction method: PCA; rotation method: Varimax with Kaiser normalization. 

 

The first round of the factor analysis found that four variables (consistency, precision, informativeness, and validity) were 
loaded significantly on more than one factor. Since the validity variable had the highest cross-loading, it was deleted from 
the model and the loadings were recalculated. A Scree plot still suggested 4 factors, and the MSA of each of the variables 
still was higher than 0.8, with the Bartlet test of sphericity significant at the 0.0001 level. The first four eigenvalues 
captured 70% of the total variance of the data. In the reduced model, each variable was loaded significantly on only one 
factor (see Table 10). The mean importance ratings for each data quality dimension are shown in Table 11. 
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Table 10. Factor loadings for the DQ criteria (reduced model). 

DQ Criteria 
 

Component 
1 2 3 4 

Accessibility 0.25 0.09 0.20 0.79 

Accuracy 0.86 0.15 0.11 0.09 

Authority 0.22 0.71 0.25 -0.16 

Completeness 0.77 0.14 0.22 0.16 

Consistency 0.57 0.22 0.16 0.41 

Currency 0.01 0.65 0.26 0.45 

Precision 0.61 0.41 0.05 0.23 

Informativeness 0.45 0.71 -0.01 0.17 

Relevance 0.40 0.59 0.03 0.42 

Reliability 0.79 0.21 0.00 0.32 

Simplicity 0.03 0.23 0.82 0.11 

Stability 0.36 0.04 0.72 0.18 

Verifiability 0.76 0.27 0.26 -0.04 

Note. Extraction method: PCA; rotation method: Varimax with Kaiser normalization. 

 

Table 11. Mean importance ratings of the DQ dimensions. 

Dimensions Mean Median Std. Deviation 
Accuracy 6.49 7 1.11 

Reliability 6.27 7 1.29 

Verifiability 6 6 1.39 

Completeness 5.96 6 1.3 

Consistency 5.95 6 1.35 

Precision 5.73 6 1.41 

Accessibility 5.62 6 1.5 

Informativeness 5.43 6 1.46 

Relevance 5.3 6 1.48 

Stability 5.25 6 1.56 

Authority 4.99 5 1.64 

Currency 4.48 5 1.72 

Simplicity 4.35 4 1.63 

 

Based on the significant loadings, the four factors were labeled as accuracy, informativeness, simplicity, and accessibility 
(see Table 12). The authors evaluated the internal consistency of the factor constructs with Cronbach’s alpha (excepting 
accessibility, which consisted of only one dimension). The alpha values of the accuracy, relevance, and simplicity 
constructs were 0.89, 0.76, and 0.60, respectively. Although the alpha value of the simplicity construct was below the 
generality accepted lower limit of 0.70, it still can be considered as acceptable for exploratory research (Hair et al., 2005). 
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The variables that loaded significantly on each factor were then used to develop summated scales. Four scales were 
developed by averaging scores of the variables assigned to each factor. The accuracy data quality scale had the highest 
average importance score followed by the accessibility scale. The simplicity data quality scale had the lowest average 
perceived importance score. The scores of the summated scales were added to the rest of the data and used in examining 
the relationships among perception of data quality and other aspects of the community’s scientific work and data 
management activities, including scientists’ demographic characteristics. 

 

Table 12. Mean importance scores of the data quality scales. 

Data Quality Scale Mean Rating 
Accuracy (Accuracy, Completeness, 
Consistency, Precision, Reliability, Verifiability) 

6.07 

Accessibility (Accessibility) 5.62 

Informativeness (Authority, Currency, 
Informativeness, Relevance) 

5.05 

Simplicity (Simplicity, Stability) 4.8 

 
5.4.3 Perceptions of quality and research work context 

To provide effective infrastructure support for the community’s data quality assurance work, it is important to understand 
how the work is divided, what roles are played, what reference sources and tools scientists use to assess and/or enhance 
data quality, and what tools they use to communicate and collaborate on data quality assurance. 

Only 9% of the participants indicated that they were familiar with data quality assessment criteria used by a specific 
academic or research community, or a funding agency; 23% were not sure, and 68% were not familiar. Participants who 
indicated familiarity with some data quality assessment models named not only traditional academic societies and funding 
agencies such as the American Physical Society and NSF, but also communities gathered around online databases such as 
the Inorganic Crystal Structure Database (ICSD), Cambridge Structural Database (CSD). Participants also referenced the 
quality criteria of scholarly journals and national and international laboratories, such as the NHMFL and the International 
Centre for Diffraction Data (ICDD).  

Those who were familiar with some existing data quality assessment models indicated they used the quality criteria and 
models to develop their own laboratory standards for data quality and repeatability, review data for quality problems, and 
review manuscripts for journal publication. 

Participants selected Origin analysis software as the most frequently used software for data quality evaluation (70%), 
followed by MatLab (40%). Participants also indicated the use of open source tools and locally written software 
applications. 

A majority of the participants (59%) indicated that they cooperated with other scientists in controlling the quality of 
project data. They most often cooperated with people inside the project (98%). 29% indicated that they cooperated with 
people outside the project to control project data quality. The most frequently used communication tool was email (99%), 
followed by phone (53%) and Skype (33%).  
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The Kruskal-Wallis test of dependence of the data quality scales on participant characteristics found several significant 
relationships. The analysis found significant difference of the data simplicity scale scores on whether participants used 
external data or not. Participants who had not used external data had a higher mean rank for the data simplicity construct 
than the scientists who did.  

Likewise, the Kruskal-Wallis test found a significant dependence of the distribution of simplicity scale scores on the use 
of documentation guidelines and the project having a data management plan. Scientists who used specific guidelines when 
documenting data or whose typical research projects had data management plans had a higher mean rank for the simplicity 
scores than the scientists who did not (see Table 13). In addition, a binary logistic regression of the project having a data 
PDQDJHPHQW�SODQ�LQWR�WKH�GDWD�EHLQJ�DUFKLYHG�DIWHU�WKH�SURMHFW�HQGV��PRGHO�ILW�OLNHOLKRRG�UDWLR��Ȥ�� ��������S� ��������
showed the project not having a data management plan to be a significant predictor of data not being archived after the 
project ends (Wald = 9.69, p = 0.002).  

The study found a statistically significant relationship between the accuracy scores and the type of collaborative project. 
Participants who worked on funded or both funded and unfunded projects had higher mean ranks for accuracy than 
participants who worked on unfunded projects only. In addition, a Kruskal-Wallis test found significant dependence of the 
accessibility scores on the scientist’s primary role in funded projects. Student research assistants had a lower mean rank 
for the accessibility than the other roles. The study did not find significant relationships between data quality construct 
scores on the scientist’s primary role in unfunded projects (see Table 13). 

In addition to examining the relationships between the project related characteristics of scientists and quality perception, 
the study also looked at the relationships between data quality perceptions and the demographic characteristics of 
participants, including participants’ methodological specialization and academic or research position in the organization. 
A Kruskal-Wallis test found significant dependence of the accessibility scale scores on research position (see Table 13). 
Assistant research scientists and postdoctoral research associates had higher mean ranks for accessibility than the other 
groups.  
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Table 13. Kruskal-Wallis test of dependence of the data quality scales on participant characteristics (significant 
relationships only). 

    Accuracy Accessibility Informativeness Simplicity 

Use of external data Chi-square 0.19 0.20 0.63 4.91 

df 1 1 1 1 

Asymp. sig 0.67 0.66 0.43 0.03 

Research Position Chi-square 1.88 12.90 3.32 5.38 

df 4 4 4 4 

Asymp. sig 0.76 0.01 0.51 0.25 

Primary role in funded projects Chi-Square 9.00 12.90 7.68 3.20 

df 6 6 6 6 

Asymp. Sig. 0.17 0.05 0.26 0.78 

Use of documentation guidelines Chi-Square 1.01 4.56 1.33 8.80 

df 2 2 2 2 

Asymp. Sig. 0.60 0.10 0.51 0.01 

Project to have a data 
management plan 

Chi-Square 2.15 1.85 3.27 9.81 

df 2 2 2 2 

Asymp. Sig. 0.34 0.40 0.20 0.01 

Worked on funded or unfunded 
projects 

Chi-Square 7.20 1.68 5.28 5.79 

df 2 2 2 2 

Asymp. Sig. 0.03 0.43 0.07 0.06 

 

 

6. Discussion 

6.1 Activities 
The analysis of survey responses identified 10 research project task constructs: research objective, simulation, sample 
material synthesis, device building, experiment setup, data collection and analysis, interpretation, team discussion, 
scholarly communication, and administration and coordination (see Table 2). From now on these ten project task 
constructs will be referred as the CMP project task model. Kerzner (2003) defined 6 general project phrases: planning, 
designing, testing, validating, analyzing, and reporting. Although most of the task constructs from the CMP project task 
model can be mapped to Kerzner’s project phases, the CMP model is of finer granularity. For instance, simulation, sample 
material synthesis, device building, and experiment setup can be mapped into the designing stage of Kerzner’s model. In 
addition to general project tasks, the CMP project task model includes tasks that are characteristic of a research project 
(e.g., research objective and interpretation).  

Although CMP is a small team science performed by individuals and/or small teams, (Stvilia et al, 2011), the CMP project 
task model includes the administration and coordination task construct, which are not included in Kerzner’s model. This 
shows that PIs and project leaders do a significant amount of administration work that needs to be taken into account 
when planning and designing an infrastructure for the project, including the infrastructure support needed for research 
data management.  
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Another model that could be informative to compare the CMP model to is the Joint Information Systems Committee’s 
(JISC)7 conceptualization of research stages. The JISC model attempts to define the relationships between research project 
and data lifecycles and has been frequently cited in the data curation literature (e.g., Tenopir et al, 2012). Even though the 
JISC model is research context specific, the CMP model is still more detailed. For example, the ideas stage from the JISC 
model can be mapped to at least three tasks from the CMP model: research objective, administration and coordination, 
and simulation. A project PI or lead researcher, in addition to pure administrative tasks, may facilitate the coordination of 
research ideas, and definition of research objectives. In addition, researchers analyze the literature to develop idea(s) for a 
research project. Likewise, the simulate, experiment and observe stage can be mapped to at least two CMP tasks (see 
Table 14). Since both the administration and coordination, and team discussion tasks of the CMP model reference the 
team aspects of research work, they can be mapped to the partners stage of the JISC model. Furthermore, both the sample 
material synthesis and device building tasks of the CMP model are research processes on their own, even though there is 
no direct semantic match between the terms of these constructs and the terms of the research stage names of the JISC 
model. On the other hand, the share data stage of the JISC model does not have a match in the CMP model. This 
difference could be explained by the objective of the JISC model to provide a conceptualization of research task and data 
relationships. Although some of the participants mentioned managing and sharing data (other than publications) in their 
responses to the survey question, the frequencies of the mentions were not sufficient for these tasks to enter into the factor 
analysis model of CMP project tasks. 

Table 14. The comparison of the CMP project task model to the JISC model of research lifecycle. 

  JISC Model of Research Lifecycle 
  Ideas Partners Proposal 

Writing 
Research Process Publishing 

 
  

Simulate, 
Experiment, 

Observe 

Manage 
Data 

Analyze 
Data  

Share 
Data  

C
M

P 
Pr

oj
ec

t T
as

k 
M

od
el

 

Research Objective 
(study, property) X               

Administration and  
Coordination (idea, 
coordinate, supervise) 

X  X             

Team Discussion 
(discuss, team)   X             

Simulation (literature, 
manage, develop , 
simulate) 

X     X X       

Sample Material 
Synthesis (material, 
characterize, 
synthesize) 

                

Device Building 
(fabricate, device)                 

Experiment Setup 
(setup, experiment)       X         

Data Collection and 
Analysis (data, analyze, 
acquire)           X     

Interpretation 
(interpret)                 

Scholarly 
Communication (write, 
paper, edit, report) 

              X 
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One of the important components of research project infrastructure is a support for metadata management. Qin, Ball, & 
Greenberg (2012) conceptualized 10 user tasks involving scientific data: discovery, identify, select, obtain, verify, analyze, 
manage, archive, publish, and cite. Although the scope of the survey question was general and did not focus on data tasks, 
there is still an overlap between the CMP project task model and Qin et al’s model. In particular, the CMP project task 
model includes the analyze and publish activities in Qin et al’s model. There are differences as well. In addition to the 
project infrastructure development and administration activities (e.g., administration and coordination, device building), 
the CMP model includes the interpretation and simulation constructs, which are data intensive activities. This study found 
that project infrastructure building activities can produce data (e.g. CAD files of the instruments used in the project) that 
can be useful and reusable for future research projects. Furthermore, collecting and preserving project process data is 
essential for data quality evaluation and replication and validation of research results. Hence, it is important that research 
data repositories and project management systems collect and curate these types of data as well. Informed by the 
Functional Requirements for Bibliographic Records (FRBR8) task model, Qin et al’s model has a more detailed structure 
for data discovery activity (i.e., discovery, identify, select, obtain). The data discovery verbs, with an exception of 
“acquire,” were not mentioned often by participants and did not enter the CMP task model. This could be a result of CMP 
scientists reasoning about data management and data discovery at a more granular level than librarians or data curators. 
Similarly, participants did not emphasize the archive task in their responses when asked to list project tasks. At the same 
time, 65% of them stated that they typically archived data after their projects ended. This could be explained by the lack 
of formal archiving and more reliance on publications and data backups as informal data archives, even if they realized 
that these practices could not be a substitution for long-term data preservation.  

“[Project work] is generally published and the data remains accessible via back-up storage. But I do not consider this the 
same thing as archiving the data. As noted in previous responses, this can lead to difficulties when retrieving data many years 
later.” (s68) 

The lack of formal archiving could be caused by the less structured and more dynamic and iterative nature of scientific 
inquiry. Project objectives and goals may change or additional new research objectives may emerge in almost any phase 
of the research project in the scientist's mind. The term "sensemaking" is often associated with such unstructured 
processes (Gasser, Sanderson, & Zdonik, 2007; Weick, 1995). Sensemaking is an iterative way to achieve understanding 
and accumulate knowledge about a particular phenomenon or process (Boland & Tenkasi, 1995). As one of the survey 
participants noted he did not do data achieving because his projects did not have a clear end and remained “work in 
progress”: 

“My research is small science, and continuously changing on a week to week basis. … [T]he projects never ‘end’ in a clear 
manner.” (s5)  

 

6.2 Data 
Borgman, Wallis, and, Enyedy (2007) identified six types of data: (a) raw data, (b) processed data, (c) verified data, (d) 
data certified using some standard, (e) models, and (f) software and algorithms. In this study, participants considered 
digital publications—such as preprint and journal articles and presentation slides—as data, because they contained graphs 
with embedded tabular data sets. Indeed, these data types were the second and third most frequently selected data types by 
survey participants. Hence, the above typology of data from Borgman et al (2007) could be extended with at least three 
additional types of data: text documents, presentations, and visualization data, such as graphs. 

One of the important data types scientists create and use is metadata, especially since one person’s metadata is another 
person’s data (Redman, 1992). To the scientist who synthesized a material sample, the chemical formula of the material is 
metadata. However, to another scientist who wants to generate the same material and/or test its properties under different 

20 
 



physical conditions, the formula could be data. Bibliographic data could be metadata to the scientist who wants to find 
publications relevant to his or her research, while to another scientist who does scientometric or bibliometric analysis of a 
particular research lab or community, the same bibliographic records could serve as data (e.g., Hinnant et al., 2012a; 
Stvilia et al., 2011). As was expected, an overwhelming majority of participants indicated that they created 
metadata/documentation when analyzing and collecting data. It was surprising, however, that metadata also was created 
“after the fact” in the scholarly communication stage when writing a paper, or presenting a paper at a conference (see 
Table 4). This suggest that the value of raw data in CMP is explicated through a presence of related derived data, such as 
related presentations or papers using the data, and the scholarly impact of those publications (e.g., the number of citations 
received).  

In addition, less than 27% of the participants indicated that they created or added metadata when depositing data for 
preservation, while 65% of them stated that they archived data after their typical project ends. In addition, more than 70% 
of the participants reported creating metadata when writing and publishing a paper in a peer-reviewed journal or when 
working on a conference presentation (see Table 4). These findings suggest that the cost of metadata creation could be a 
disincentive to scientists to document their data, unless the cost is balanced by some immediate benefit, such as the value 
of related publications or presentations. These also could indicate that most of them did not do formal archiving of 
primary data in a specialized data repository for community sharing, and instead did informal archiving on their personal 
computers. This conclusion is further strengthened by a majority of the participants indicating that they did not use any 
specific documentation guidelines, and only 34% indicating that their typical project had a data management plan. 

The use of specialized tools for creating structured documentation seems to be rare among CMP scientists. Only 22% of 
the participants indicated that they used electronic lab notebooks, which was a much lower percentage than the use of 
email (68%), presentation software (80%), or graphing software (84%). For metadata creation, CMP scientists might 
prefer using the same tools that they use to generate, analyze, or present data, instead of using standalone specialized 
metadata tools.  

60% of the participants stated that they did not use any specific metadata standard for documenting their data. 22% of the 
participants used specific documentation guidelines of their research team, lab or a funding agency. These are in a clear 
consensus with the findings of the earlier study by Tenopir et al (2011). They found that a majority (56%) of their 
respondents, who represented multiple disciplines, did not use any metadata standard and 22% followed their local lab 
documentation guidelines. These results show that the adoption of metadata standards in CMP remains a challenge that 
warrants more research of the barriers and facilitators to the adoption.  

An overwhelming majority of the participants felt that metadata they created served its purpose and was of good, very 
good, or excellent quality. This finding echoes those of data quality studies in other domains, where data and metadata 
creators felt satisfied with good enough data quality which met their local needs. However, the literature has shown that 
meeting local needs may not be sufficient for making data globally sharable and interoperable (Shreeves et al, 2005; 
Stvilia, Gasser, Twidale, Shreeves, & Cole, 2004). 

When asked about data management roles in a typical funded research project, 51% of the participants stated that the 
project PI was responsible for managing project data. This number was 44% for a typical unfunded project. For funded 
projects only 1% indicated that someone outside their project team, such as IT staff, was responsible for managing project 
data; no participants indicated this was true for unfunded projects. These results again strengthen the conclusion that in 
CMP data curation is mostly informal and not centralized. Data is owned at the individual and project team levels instead 
of at the community level, and most of the times PIs, project leads, or students who generated the data are considered the 
owners and curators of the data. As one of the participants stated: 

“…data is not archived in part because the generator of data is seen as steward of data throughout their career.” (s89) 
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6.3 Quality 
The most frequent categories of data problems were metadata problems: lack of file naming conventions and the difficulty 
of interpreting data due to poor or lost documentation (see Table 7). The most frequently reported sources of data quality 
problems were related to experiment process quality, such as human errors, impure sample materials, imprecise 
instruments, interference from external environment, or errors in experiment design (see Table 8).  

Data quality can be changed actively through direct modification of data objects. CMP scientists may clean data to 
enhance its quality. In some cases, however, these attempts to remove background “noise” or amplify a “good” signal may 
inadvertently introduce errors if they are not done correctly: 

“Once you have the quantities you think you are measuring, there are additional contributions to these quantities, some of 
which you are not interested in. And so how do you subtract that? So often… well, some are worried about what these 
subtractions are.” (p3) 

Scientists may also deliberately degrade the quality of their data or metadata to keep their “know how” and specialized 
knowledge secret from competitors,  

“You maybe spend one year or two years to make this sample without the notebook. But as long as you know its chemical 
formula, if you are a good scientist, you will figure out how to make it. So many labs … don’t want to mention the name 
[chemical formula] anywhere. They treat their sample’s name as a code.” (p6) 

Only 9% of the survey participants selected the purposeful degradation of data quality as a source of data quality 
problems, though (see Table 8). This might distinguish the CMP community from open online communities of knowledge 
creation such as Wikipedia, where purposeful degradation of quality is a more frequently occurring problem (Stvilia et al., 
2008). 

Data quality can be changed not only through direct manipulation or modification of the data, but also indirectly, with 
changes in the context of its interpretation and use in time and space. This could be caused by changes in culture, 
community composition, the set of activities using the data, or in the state of knowledge and technology (Stvilia & Gasser, 
2008a). 33% of the survey participants identified the context change as a source of data quality problems. Over time, as 
the research methods and techniques change, data quality can be evaluated differently. 

“There’s an understanding of the limitations of the technique of the time, but, anyone should go and look at that data, with that 
eye, say, ‘there’s some limitations, technique of that time, but this data would still be valid within these limitations.’ And 
anybody can go, given those limitations of time, and analyze that data again.” (p4) 

Data quality also is influenced by the technology used to generate or collect the data. 51% of the participants selected 
imprecise instruments as a source of data quality problems (see Table 8). Alternatively, improvements in the research 
technology may result in a higher level of data quality and novel contributions to the science. One of the interviewees 
discussed how a new technology enabled his team to obtain high quality measurement data, which eventually led to a 
successful paper in an important journal of the field: 

“This paper was done, because the quality of the data, the signal to noise was such, because of those pair amplifiers, they 
allowed us to get this paper accepted to Physical Review Letters in like two, three weeks. Just because one detail of the 
electronics.” (p4) 

Also, as time goes and the literature and knowledge of a particular area evolves, not only can the quality of the same data 
can be evaluated differently, but it also can be interpreted differently. 
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“The field evolves, the reputation of that data evolves as people discuss, as theorists get involved, more data is acquired. 
There’s a deeper understanding of what you saw really means, and we, you start talking about it in a different way.” (p7) 

Different scientific communities may have different scholarly communication cultures, and may have different 
expectations and norms for the quality (e.g., completeness) of the research process description in a publication. One of the 
interview participants discussed the differences in and expectations for the completeness of the description of a sample 
material generation process when publishing in physics versus chemistry journals: 

“[In a physics journal] you just can say I made a single crystal, and I measured that. That is it. But, for a chemistry journal, you 
need to list your X-ray data or how you make it in a very detailed way.” (p8) 

To identify the community’s understanding of data quality, the study asked survey participants to rate 17 quality 
dimensions by their importance. The factor analysis produced four data quality constructs: accuracy, accessibility, 
informativeness, and simplicity. The literature includes studies of data quality in different communities. When examining 
consumers’ perception of online health information quality, Stvilia et al. (2009) identified five information quality 
constructs: accuracy, completeness, authority, usefulness, and accessibility. In a different study, Huang et al. (2012) 
investigated the understanding of and priorities for data quality by genomics scientists and data curators. They defined a 
data quality model consisting of five data quality constructs. These three models share at least two constructs, accuracy 
and accessibility, even though the construct compositions differ slightly across the models (see Table 15). It is important 
to note that the accuracy constructs are rated the highest in all three models, followed by the accessibility constructs.  

The differences among the three quality perception models could be attributed to the differences in the communities 
studied, the types of data these models were intended for, as well as the number of dimensions included in the starting 
models before factor analysis was applied. Huang et al (2012) started with 19 quality dimensions. Stvilia et al (2009) used 
21 quality dimensions as a starting model. This study used 14 dimensions in its starting model of quality perception. The 
starting sets of quality dimensions were obtained both from the literature (e.g., Stvilia et al, 2007; Wang & Strong, 1996) 
and pre-survey interviews of representatives of the studied communities. Hence, these starting models did reflect some of 
the differences in community and context specific vocabularies, and priorities for data and information quality 
dimensions. For example, the precision of measurements, and consistency in naming and representing data files were very 
important for experimentalists in the CMP community, while the other two groups assigned lower priorities to those 
quality dimensions, particularly the consumers of online health information (see Table 15). This could be explained by 
health information consumers not conducting original research and/or collecting and managing raw research data, but 
rather using derived information products such as articles, blogs, factsheets, and Q&A pages. 
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Table 15. Comparison of data quality models. Constructs in italics are common across all three models. 

CMP DQ Model Online Consumer Health IQ 
Model (Stvilia et al., 2009) 

Genomics DQ Model (Huang et 
al., 2012) 

DQ Scales Mean 
Rating 

IQ Scales Mean 
Rating 

DQ Scales Mean 
Rating 

Accuracy (Accuracy, 
Completeness, Consistency, 
Precision, Reliability, 
Verifiability) 

6.07 Accuracy (Accuracy, 
Credibility, Reliability) 

4.41 Accuracy (Accuracy, Unbiased, 
Believability, Traceability) 

6.01 

Accessibility (Accessibility) 5.62 Completeness 
(Completeness, Clarity) 

4.17 Accessibility (Accessibility, 
Believability, Appropriate 
amount of information) 

5.8 

Informativeness (Authority, 
Currency, Informativeness, 
Relevance) 

5.05 Authority (Authority) 3.8 Usefulness (Interpretability, 
Understandability, Ease of 
manipulation, Consistent 
representation, Value added) 

5.52 

Simplicity (Simplicity, 
Stability) 

4.8 Usefulness (Ease of use, 
Objectivity, Utility) 

3.75 Relevance (Relevant, Concise 
representation, Up-to-date, 
Reputation, Value) 

5.08 

    Accessibility (Accessibility, 
Cohesiveness, Consistency, 
Volatility) 

3.57 Security (Security, 
Traceability) 

4.56 

 

The survey data showed that CMP scientists may assign different importance to different quality criteria. On average, 
CMP scientists rated highest the dimensions loaded on the accuracy construct such as accuracy, reliability and verifiability 
(see Table 11). Data used in CMP ranges from sample materials and CAD files for designing and manufacturing parts for 
an experiment, to simulation data and computer codes. Quality assurance methods used in CMP can vary from those used 
in manufacturing—such as reducing signal variation through controlling noise introduced by the equipment and 
environment—to those used in metadata and software quality control. However, in contrast to manufacturing, outcomes of 
scientific work are uncertain. Often, physical properties of a material are not known and there are no “gold standards” or 
reference sources to evaluate the quality of experimental data against other than the data obtained from previous 
experiments. Hence, reliability or reproducibility is one of the most important quality criteria for scientific data: 

“The most important thing is reproducibility. You get a particular material, you’re looking for particular effects, whatever ... 
You measure it, and find a particular behavior in a particular crystal. You switch the crystal, and you get another one. And, you 
get a very similar if not identical data set, and so, and you get a third one, you still get the same. And, perhaps you get a fourth 
one, and go and use another measurement system, another cryostat, and other electronics, in base they’re still the same, same 
data set. Then someone in Japan and China does the same and gets consistently the same results.” (p4) 

Alternatively the reputation and consequently the value of data may decline if other researchers cannot replicate the data 
or a flaw is discovered when reusing the data 

 “If at the end of the day one guy just says, ‘OK, I cannot repeat it [data],’ it means either you are doing something wrong or 
you are cheating.” (p6) 
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The value of data and its quality can be a function of the activity success or failure, the amount of data use, the cost of 
activity, the amount of novel or unexpected information, the amount of payoff received by the agent, or a combination of 
many or all of the above (Machlup, 1983; Marschak, 1971; Radner, 1986; Stvilia & Gasser, 2008b). The purpose of 
scientific research is to acquire new knowledge and advance the state of art of a particular discipline. In CMP, data and its 
quality gain in importance when the researcher perceives that it may contain new information that could lead to a novel 
contribution to the literature: 

“So, let’s say [a] good sample gives you good data, but I still divide them … [into] useful data or not useful data. Yes. 
Sometimes I make a sample. I measure something. Then I think, OK, that’s not so exciting physics. So I cannot publish a high 
quality paper. So then I just slow down or just put them aside. ...Let’s say [the] sample determines [whether] the data is good or 
not. Physics determines [whether] the data is excellent or not.” (p6) 

A formal quality assessment model can be developed collaboratively by a community. It can also be developed and 
enforced in a top-down manner by governments, businesses, or organizations. In addition, data quality assessment models 
can be offered by third-party quality rating and certification entities (Stvilia et al., 2009). In this study, only 9% of the 
participants were familiar with some formal data quality assessment criteria or model. They stated familiarity with data 
quality criteria and models offered by government agencies such as the NSF, scholarly societies, databases, and labs. 
Future research directly related to this one could compare the CMP data quality model to the models and principles used 
by those entities. This would help further refine and contextualize the CMP data quality model and develop a best 
practices guide for data quality assurance, which would be harmonized with the data management needs of project teams, 
the community as a whole, and their funding partners. 

Similar to earlier studies of data quality perception in different scientific communities (e.g., Huang et al., 2012), this study 
found that, depending on different roles played in research projects and differences in overall data practices, there could 
be differences in the perceptions of data quality by scientists. Scientists who had not used external data had higher data 
simplicity scale scores on average than scientists who had. This might indicate that scientists’ concerns about outside data 
complexity and interpretability could serve as barriers to data reuse. Alternatively, it might indicate that the scientists 
assigned a lower priority to the simplicity or ease of use of data because they had not had an experience of interpreting 
outside data.  

Scientists who used documentation guidelines or had data management plans for their projects had higher simplicity scale 
scores on average than scientists who did not. In addition, the study found a positive relationship between a project having 
a data management plan and data being archived after the project ends. This could be a result of those scientists having 
higher data management literacy and being more conscious of data quality issues than scientists who were not introduced 
to or did not follow more formal data management practices. This also could be caused by scientists complying with data 
management requirements set by funding agencies, such as the NSF. A separate investigation of the effects of government 
data policies on the data practices of scientists and their perception of data quality could shed more light on these 
relationships. 

 

7. Conclusions 

The paper examined research project tasks and the perceptions of data quality in a CMP community. The study identified 
ten constructs of research project tasks and four data quality constructs. The community placed the highest importance on 
the intrinsic quality dimensions (i.e. accuracy). CMP scientists generate and use different data ranging from CAD files 
and physical material samples to scholarly publications and metadata. A CMP research process includes at least ten 
activities with multiple data inputs and outputs. The different activities of the process may have different primary data. 
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The value and importance of primary and intermediary datasets are defined by the value and impact of final data products, 
such as publications. The study found that scientists performed value-adding actions, such as adding metadata to related 
datasets when presenting or publishing research findings. Future research may integrate the CMP project task model and 
data quality model developed by this study with data task models from the literature as well as with typologies of data, 
project roles, and quality assurance actions to develop a comprehensive data management ontology for CMP. 

The study developed a typology of project tasks as well as identified the types of data generated and used by scientists, 
and the tools used to manage data. Future research related to the current study will examine the relationships among the 
types of projects tasks, data and tools. In addition, the study found that the quality priorities of the CMP scientists who 
worked on funded projects were different from those who had unfunded projects. Similarly, there were differences in 
quality priorities on some of the quality dimensions by scientists who played different roles. Future related research could 
further investigate the causes for these differences by collecting additional qualitative data. 

The findings of this study can inform the design of data management policies, best practice guides, and infrastructure 
tools, such as a data management ontology aligned and harmonized with the data practices and priorities of the CMP 
community and other related communities.  
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Appendix 
Table 16. Definitions of DQ dimensions. 

Dimension Definition 
Accessibility Ease of locating and obtaining research data object relative to a particular activity (Stvilia et al, 2007). 
Accuracy The degree to which the data correctly represents an object, process, or phenomenon in the context of a particular 

activity or culture (Stvilia et al, 2007); the degree to which the measured value(s) fall at or very close to the true value 
(Ellingson & Heben, 2011). 

Authority The degree of reputation of data in a given community (Stvilia et al, 2007). 
Completeness 
 

The extent to which data is complete according to some general or contextual reference source (Stvilia et al, 2007). 

Consistency The extent to which similar attributes or elements of data are consistently represented using the same structure, 
format, and precision (Stvilia et al, 2007). 

Currency The age of data (Stvilia et al, 2007). 
Informativeness The amount of information contained in data (Stvilia et al, 2007). 
Precision The granularity of the model or content values of data according to some general or contextual reference sources 

(Stvilia et al, 2007); the degree to which repeated measurements fall reliably at or very near the same value (which 
may or may not be the correct value) (Ellingson & Heben, 2011). 

Relevance The extent to which data is related to the matter at hand (Relevance, 2012; Stvilia et al, 2007). 
Reliability The degree of confidence in data in the context of a particular activity. 
Simplicity The extent of cognitive complexity/simplicity of data measured by some index or indices (Stvilia et al, 2007). 
Stability The amount of time data remains valid in the context of a particular activity (Stvilia et al, 2007). 
Validity The extent to which data is valid according to some stable reference source, such as a dictionary or set of domain 

constraints and norms (Stvilia et al, 2007). 
Verifiability The extent to which the correctness of data is verifiable or provable in the context of a particular activity (Stvilia et 

al, 2007). 
 

 

1 PRONOM. http://www.nationalarchives.gov.uk/PRONOM/Default.aspx 
2 Research Data Alliance. https://rd-alliance.org/ 
3 Data Curation Profiles. http://www4.lib.purdue.edu/dcp/about 
4 JHOVE. http://jhove.sourceforge.net/ 
5 OpenRefine. https://github.com/OpenRefine/OpenRefine 
6 Stanford CoreNLP. http://nlp.stanford.edu/s 
oftware/corenlp.shtml 
7 Joint Information Systems Committee (JISC). Stages of the research and data lifecycle. 
http://www.jisc.ac.uk/whatwedo/campaigns/res3/jischelp.aspx 
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